Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 63
1.
Phytomedicine ; 128: 155489, 2024 Jun.
Article En | MEDLINE | ID: mdl-38569295

BACKGROUND AND PURPOSE: Atherosclerosis is the primary pathological basis of cardiovascular disease. Ferroptosis is a regulated form of cell death, a process of lipid peroxidation driven by iron, which can initiate and promote atherosclerosis. STAT6 is a signal transducer that shows a potential role in regulating ferroptosis, but, the exact role in ferroptosis during atherogenesis remains unclear. The Traditional Chinese Medicine Maijitong granule (MJT) is used for treating cardiovascular disease and shows a potential inhibitory effect on ferroptosis. However, the antiatherogenic effect and the underlying mechanism remain unclear. In this study, we determined the role of STAT6 in ferroptosis during atherogenesis, investigated the antiatherogenic effect of MJT, and determined whether its antiatherogenic effect was dependent on the inhibition of ferroptosis. METHODS: 8-week-old male LDLR-/- mice were fed a high-fat diet (HFD) at 1st and 10th week, respectively, to assess the preventive and therapeutic effects of MJT on atherosclerosis and ferroptosis. Simultaneously, the anti-ferroptotic effects and mechanism of MJT were determined by evaluating the expression of genes responsible for lipid peroxidation and iron metabolism. Subsequently, we reanalyzed microarray data in the GSE28117 obtained from cells after STAT6 knockdown or overexpression and analyzed the correlation between STAT6 and ferroptosis. Finally, the STAT6-/- mice were fed HFD and injected with AAV-PCSK9 to validate the role of STAT6 in ferroptosis during atherogenesis and revealed the antiatherogenic and anti-ferroptotic effect of MJT. RESULTS: MJT attenuated atherosclerosis by reducing plaque lesion area and enhancing plaque stability in both preventive and therapeutic groups. MJT reduced inflammation via suppressing inflammatory cytokines and inhibited foam cell formation by lowering the LDL level and promoting ABCA1/G1-mediated lipid efflux. MJT ameliorated the ferroptosis by reducing lipid peroxidation and iron dysregulation during atherogenesis. Mechanistically, STAT6 negatively regulated ferroptosis by transcriptionally suppressing SOCS1/p53 and DMT1 pathways. MJT suppressed the DMT1 and SOCS1/p53 via stimulating STAT6 phosphorylation. In addition, STAT6 knockout exacerbated atherosclerosis and ferroptosis, which abolished the antiatherogenic and anti-ferroptotic effects of MJT. CONCLUSION: STAT6 acts as a negative regulator of ferroptosis and atherosclerosis via transcriptionally suppressing DMT1 and SOCS1 expression and MJT attenuates atherosclerosis and ferroptosis by activating the STAT6-mediated inhibition of DMT1 and SOCS1/p53 pathways, which indicated that STAT6 acts a novel promising therapeutic target to ameliorate atherosclerosis by inhibiting ferroptosis and MJT can serve as a new therapy for atherosclerosis treatment.


Atherosclerosis , Cation Transport Proteins , Drugs, Chinese Herbal , Ferroptosis , STAT6 Transcription Factor , Suppressor of Cytokine Signaling 1 Protein , Animals , Ferroptosis/drug effects , Atherosclerosis/drug therapy , STAT6 Transcription Factor/metabolism , Male , Drugs, Chinese Herbal/pharmacology , Mice , Suppressor of Cytokine Signaling 1 Protein/metabolism , Tumor Suppressor Protein p53/metabolism , Signal Transduction/drug effects , Receptors, LDL/metabolism , Diet, High-Fat , Mice, Inbred C57BL , Mice, Knockout
2.
Int J Biol Macromol ; 263(Pt 2): 130473, 2024 Apr.
Article En | MEDLINE | ID: mdl-38423437

Momordica Charantia Polysaccharide (MCP) is a key bioactive compound derived from bitter melon fruit. This review summarizes the advancements in MCP research, including extraction techniques, biological activities, and mechanisms. MCP can be extracted using various methods, and has demonstrated hypoglycemic, antioxidant, anti-inflammatory, and immunoregulatory effects. Research suggests that MCP may regulate metabolic enzymes, oxidative stress reactions, and inflammatory pathways. The review highlights the potential applications of MCP in areas such as anti-diabetes, antioxidant, anti-inflammatory, and immunoregulatory research. Future research should focus on elucidating the molecular mechanisms of MCP and optimizing extraction methods. This review provides a foundation for further research and utilization of MCP.


Antioxidants , Momordica charantia , Antioxidants/pharmacology , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Anti-Inflammatory Agents
3.
Environ Sci Pollut Res Int ; 31(10): 14804-14819, 2024 Feb.
Article En | MEDLINE | ID: mdl-38285250

The low-carbon development of new energy vehicles (NEVs) is critical to achieving the goals of carbon peaking and carbon neutrality. As such, combining gray model theory with system dynamics (SD-GM) and based on the bidirectional-cycle prediction theory, we propose a NEV annual average mileage algorithm considering the impact of the epidemic in China, taking private cars as an example. Then, combining a voluntary advocacy strategy (VA) with the SD-GM theory (VA-SD-GM integration), we establish an energy-saving and carbon-reduction management model. To evaluate the proposed algorithm, we performed a dynamic simulation. The results indicate that the enhanced green scenario enabled significant energy-saving and CO2 reduction performance but would cause side effects in the long term. Compared with the enhanced green scenario, the linkage mode reduced the impact of parking space tension, the number of NEV trips, and the intensification of traffic congestion by approximately 33%, 50%, and 34%, respectively. It effectively suppressed the continuous increase in side effects and had a synergistic effect of carbon reduction, energy conservation, congestion alleviation, and side-effect reduction. The study provides a theoretical basis for optimizing the energy-saving and CO2 reduction path of NEVs.


Algorithms , Carbon Dioxide , Automobiles , Carbon , China , Economic Development
4.
Neuropathology ; 44(1): 3-20, 2024 Feb.
Article En | MEDLINE | ID: mdl-37345225

In the central nervous system (CNS), a large group of glial cells called astrocytes play important roles in both physiological and disease conditions. Astrocytes participate in the formation of neurovascular units and interact closely with other cells of the CNS, such as microglia and neurons. Stroke is a global disease with high mortality and disability rate, most of which are ischemic stroke. Significant strides in understanding astrocytes have been made over the past few decades. Astrocytes respond strongly to ischemic stroke through a process known as activation or reactivity. Given the important role played by reactive astrocytes (RAs) in different spatial and temporal aspects of ischemic stroke, there is a growing interest in the potential therapeutic role of astrocytes. Currently, interventions targeting astrocytes, such as mediating astrocyte polarization, reducing edema, regulating glial scar formation, and reprogramming astrocytes, have been proven in modulating the progression of ischemic stroke. The aforementioned potential interventions on astrocytes and the crosstalk between astrocytes and other cells of the CNS will be summarized in this review.


Ischemic Stroke , Stroke , Humans , Astrocytes/pathology , Ischemic Stroke/therapy , Ischemic Stroke/pathology , Central Nervous System/pathology , Stroke/pathology , Gliosis/pathology
5.
Exp Neurol ; 372: 114619, 2024 02.
Article En | MEDLINE | ID: mdl-38029808

Bone marrow mesenchymal stem cells (BMSCs) have therapeutic potential in the subacute/chronic phase of acute ischemic stroke (AIS), but the underlying mechanisms are not yet fully elucidated. There is a knowledge gap in understanding the metabolic mechanisms of BMSCs in stroke therapy. In this study, we administered BMSCs intravenously 24 h after reperfusion in rats with transient cerebral artery occlusion (MCAO). The treatment with BMSCs for 21 days significantly reduced the modified neurological severity score of MCAO rats (P < 0.01) and increased the number of surviving neurons in both the striatum and hippocampal dentate gyrus region (P < 0.01, respectively). Moreover, BMSCs treatment resulted in significant enhancements in various structural parameters of dendrites in layer V pyramidal neurons in the injured hemispheric motor cortex, including total length (P < 0.05), number of branches (P < 0.05), number of intersections (P < 0.01), and spine density (P < 0.05). Then, we performed plasma untargeted metabolomics analysis to study the metabolic changes of BMSCs on AIS. There were 65 differential metabolites identified in the BMSCs treatment group. Metabolic profiling analysis revealed that BMSCs modulate abnormal sphingolipid metabolism and glycerophospholipid metabolism, particularly affecting core members such as sphingomyelin (SM), ceramide (Cer) and sphingosine-1-phosphate (S1P). The metabolic network analysis and pathway-based compound-reaction-enzyme-gene network analysis showed that BMSCs inhibited the Cer-induced apoptotic pathway and promoted the S1P signaling pathway. These findings suggest that the enhanced effects of BMSCs on neuronal survival and synaptic plasticity after stroke may be mediated through these pathways. In conclusion, our study provides novel insight into the potential mechanisms of BMSCs treatment in stroke and sheds light on the possible clinical translation of BMSCs.


Ischemic Stroke , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Stroke , Rats , Animals , Rats, Sprague-Dawley , Ischemic Stroke/metabolism , Sphingolipids/metabolism , Sphingolipids/therapeutic use , Stroke/metabolism , Mesenchymal Stem Cells/metabolism , Glycerophospholipids/metabolism , Glycerophospholipids/therapeutic use , Mesenchymal Stem Cell Transplantation/methods , Bone Marrow Cells
6.
Clin Immunol ; 259: 109881, 2024 02.
Article En | MEDLINE | ID: mdl-38142900

Ischemic stroke (IS) is a significant global public health issue with a high incidence, disability, and mortality rate. A robust inflammatory cascade with complex and wide-ranging mechanisms occurs following ischemic brain injury. Inflammasomes are multiprotein complexes in the cytoplasm that modulate the inflammatory response by releasing pro-inflammatory cytokines and inducing cellular pyroptosis. Among these inflammasomes, the Absent in Melanoma 2 (AIM2) inflammasome shows the ability to detect a wide range of pathogen DNAs, thereby triggering an inflammatory response. Recent studies have indicated that the aberrant expression of AIM2 inflammasome in various cells is closely associated with the pathological processes of ischemic brain injury. This paper summarizes the expression and regulatory role of AIM2 in CNS and peripheral immune cells and discusses current therapeutic approaches targeting AIM2 inflammasome. These findings aim to serve as a reference for future research in this field.


Brain Injuries , Ischemic Stroke , Melanoma , Humans , Inflammasomes/metabolism , Pyroptosis , Brain Injuries/metabolism , DNA-Binding Proteins/metabolism
7.
J Colloid Interface Sci ; 656: 68-79, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-37984172

In CO2 cycloaddition reactions, hydrogen bond donor (HBD) groups are considered environmentally friendly substitutes for metals to promote epoxide ring-opening through interactions with nucleophilic anions. A core-shell structured ILs-based catalyst (mSiO2@MCM-NH2-OH) with dual hydrogen bond donors (-OH and -NH2) was synthesized by copolymerization strategy. Through in-depth characterization, it has been demonstrated that the catalyst (mSiO2@MCM-NH2-OH) possesses multiple catalytic active sites including -OH, -NH2, Br- groups, and the synergistic effect of double HBD groups (-OH and -NH2) and Lewis base (Br-) significantly improved the catalytic activity. Meanwhile, the core-shell structure of the catalyst effectively prevents the loss of active components, which makes the yield remain at about 94 % after 10 cycles. Based on Density Functional Theory (DFT) calculations, a synergistic catalytic mechanism, which involves dual hydrogen-bond donors (-OH and -NH2) and Lewis bases (Br-) was proposed. The cooperative interaction between -OH/-NH2 and Br- reduced the ring-opening barrier of epoxide from 58.6 to 32.0 kcal mol-1 significantly, and thereby facilitated the CO2 cycloaddition reaction.

8.
BMC Pregnancy Childbirth ; 23(1): 865, 2023 Dec 16.
Article En | MEDLINE | ID: mdl-38104082

BACKGROUND: Polycystic ovary syndrome (PCOS) has unusual levels of hormones. The hormone receptors in the endometrium have a hostile effect and make the microenvironment unfavorable for embryo implantation. The use of gonadotropin stimulation during in vitro fertilization (IVF) may have an impact on embryo implantation and live birth rate. According to recent data, the clinical results of day 4 embryo transfer (D4 transfer) were on par with those of day 5 embryo transfer (D5 transfer) in IVF-ET. There are few studies comparing the outcomes of transplants with various etiologies and days. The purpose of this study was to determine which transfer day had the best result for PCOS patients undergoing IVF. METHODS: This retrospective cohort study was conducted in the Xingtai Infertility Specialist Hospital between January 2017 and November 2021. A total of 1,664 fresh ART cycles met inclusion criteria, including 242 PCOS transfers and 1422 tubal factor infertility transfers. CONCLUSIONS: PCOS individuals had the highest live birth rate on D4 transferred. It was not need to culture embryos to blastocysts to optimize embryo transfer for PCOS women. This could be a novel approach to transplantation for PCOS.


Infertility , Polycystic Ovary Syndrome , Humans , Female , Pregnancy , Birth Rate , Polycystic Ovary Syndrome/complications , Retrospective Studies , Fertilization in Vitro/methods , Live Birth/epidemiology , Pregnancy Rate , Tumor Microenvironment
9.
Redox Biol ; 68: 102942, 2023 Dec.
Article En | MEDLINE | ID: mdl-37918127

In this study, we executed single-cell RNA sequencing of intestinal crypts. We analyzed the differentially expressed genes (DEGs) at different time points (the first, third, and fifth days) after 13 Gy and 15 Gy abdominal body radiation (ABR) exposure and then executed gene ontology (GO) enrichment analysis, RNA velocity analysis, cell communication analysis, and ligand‒receptor interaction analysis to explore the vital events in damage repair and the multiple effects of the Wnt3/ß-catenin pathway on irradiated mice. Results from bioinformatics analysis were confirmed by a series of biological experiments. Results showed that the antibacterial response is a vital event during the damage response process after 13 Gy ABR exposure; ionizing radiation (IR) induced high heterogeneity in the transient amplification (TA) cluster, which may differentiate into mature cells and stem cells in irradiated small intestine (SI) crypts. Conducting an enrichment analysis of the DEGs between mice exposed to 13 Gy and 15 Gy ABR, we concluded that the Wnt3/ß-catenin and MIF-CD74/CD44 signaling pathways may contribute to 15 Gy ABR-induced mouse death. Wnt3/ß-catenin promotes the recovery of irradiated SI stem/progenitor cells, which may trigger macrophage migration inhibitory factor (MIF) release to further repair IR-induced SI injury; however, with the increase in radiation dose, activation of CD44 on macrophages provides the receptor for MIF signal transduction, initiating the inflammatory cascade response and ultimately causing a cytokine release syndrome. In contrast to previous research, we confirmed that inhibition of the Wnt3/ß-catenin pathway or blockade of CD44 on the second day after 15 Gy ABR may significantly protect against ABR-induced death. This study indicates that the Wnt3/ß-catenin pathway plays multiple roles in damage repair after IR exposure; we also propose a novel point that the interaction between intestinal crypt stem cells (ISCs) and macrophages through the MIF-CD74/CD44 axis may exacerbate SI damage in irradiated mice.


Signal Transduction , beta Catenin , Mice , Animals , beta Catenin/genetics , beta Catenin/metabolism , Stem Cells/metabolism , Sequence Analysis, RNA
10.
Mol Cell Biochem ; 2023 Oct 03.
Article En | MEDLINE | ID: mdl-37787835

There are complex interactions between the gut and the brain. With increasing research on the relationship between gut microbiota and brain function, accumulated clinical and preclinical evidence suggests that gut microbiota is intimately involved in the pathogenesis of neurodegenerative diseases (NDs). Increasingly studies are beginning to focus on the association between gut microbiota and central nervous system (CNS) degenerative pathologies to find potential therapies for these refractory diseases. In this review, we summarize the changes in the gut microbiota in Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis and contribute to our understanding of the function of the gut microbiota in NDs and its possible involvement in the pathogenesis. We subsequently discuss therapeutic approaches targeting gut microbial abnormalities in these diseases, including antibiotics, diet, probiotics, and fecal microbiota transplantation (FMT). Furthermore, we summarize some completed and ongoing clinical trials of interventions with gut microbes for NDs, which may provide new ideas for studying NDs.

11.
Biomed Pharmacother ; 168: 115726, 2023 Dec.
Article En | MEDLINE | ID: mdl-37862973

Momordica charantia polysaccharide (MCP) is a potential drug for the prevention and alleviation of diabetes mellitus (DM) and diabetic retinopathy (DR). This study aimed to investigate the potential protective effects of MCP on early-stage DR and explore the underlying mechanisms. The model group (DM group) and treatment group (D+H group) were established by inducing type 1 DM using a single dose of streptozotocin (STZ) at 60 mg/kg. After modeling, the D+H group was orally administered a 500 mg/kg dose of MCP solution once daily for 12 weeks. Monitoring of systemic indicators (FBG, body weight, general condition) and retinal tissue inflammation and apoptosis (HE staining, IL-6, MCP-1, TNF-α, VEGF, NF-κB, Caspase-3) in this study demonstrated that MCP intervention alleviated both DM and DR. MCP improved the body weight and general condition of DM rats by reducing FBG levels. It also enhanced the anti-inflammatory and anti-apoptotic capabilities of retinal neurons and microvessels by modulating the actions of cytokines, thereby further regulating the inflammation and apoptosis of retinal neurons and microvessels. The underlying mechanisms may be associated with the downregulation of NF-κB and Caspase-3 pathway protein expression, as well as the downregulation of mRNA expression of NF-κB and Caspase-3 pathway genes. Further research is needed to elucidate the potential mechanisms underlying the protective effects of MCP on DR. MCP may emerge as a selective medication for the prevention and alleviation of DM and a novel natural medicine for the prevention and alleviation of DR.


Diabetes Mellitus, Type 1 , Diabetic Retinopathy , Momordica charantia , Rats , Animals , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/prevention & control , Diabetic Retinopathy/genetics , NF-kappa B/therapeutic use , Caspase 3 , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Inflammation/drug therapy , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Body Weight
12.
Phytochemistry ; 216: 113863, 2023 Dec.
Article En | MEDLINE | ID: mdl-37751824

Seven undescribed terpenoids, comprising two guaiane-type sesquiterpene lactones (1-2), one eucalyptol-type sesquiterpene (3), one monolactone (4), and three triterpenoids (5-7), along with 35 known analogues, were isolated from the leaves of Artemisia vulgaris L. Their structures and configurations were analysed by extensive spectroscopy. Compounds 1, 2, 8-10, 13, 17, 19, and 28 showed antineuroinflammatory activity, and compounds 1 and 2 revealed remarkable antineuroinflammatory effects, with an IC50 value of 2.2 ± 0.1 and 1.6 ± 0.1 µM, more potent than the positive control drug dexamethasone. Furthermore, compounds 1 and 2 could inhibit the expression of BV-2 inflammatory genes (IL-6, TNF-α, IL-1ß) induced by LPS, downregulate the critical inflammatory protein production of iNOS and COX-2. The anti-HSV-1 activity screening revealed that compounds 28, 29 and 38 exhibited inhibitory activity against HSV-1 proliferation. Particularly, compound 28 exhibited a significant anti-HSV-1 effect, inhibiting the proliferation of HSV-1 and acyclovir-resistant strains of HSV-1/153 and HSV-1/Blue. Our research identified compounds 1, 2, and 28 from A. vulgaris., which could potentially serve as lead compounds for antineuroinflammatory and anti-HSV-1 activities.


Artemisia , Sesquiterpenes , Artemisia/chemistry , Terpenes/pharmacology , Chromatography, Liquid , Tandem Mass Spectrometry , Sesquiterpenes/chemistry , Molecular Structure
13.
Biochem Biophys Res Commun ; 680: 177-183, 2023 11 05.
Article En | MEDLINE | ID: mdl-37742346

Despite being a powerful weapon against cancer cells, cisplatin's therapeutic potential is hampered by numerous adverse reactions, including acute kidney injury (AKI). Compound 5 has 3-SH fragments at the end of the vertical short alkyl side chain, which is an ROS scavenger synthesized. In this study, we evaluated the protective effect of compound 5 on the kidney after cisplatin administration and its mechanism. The results founded that compound 5 can alleviate serum urea nitrogen and serum creatinine induced by cisplatin administration in vivo. In addition, histopathological analysis of the kidneys showed that compound 5 significantly reduced cisplatin-induced (Cis-induced) renal toxicity compared with the cisplatin group. A mechanism study showed that compound 5 significantly reduces NOX4 levels, improves the activity of antioxidant enzymes (SOD and GSH-Px), reduces Malondialdehyde (MDA) levels, increases the total antioxidant level, reduces oxidative stress, and thus reduces kidney tissue damage. At the same time, compound 5 activated the Nrf2 signaling pathway. In addition, it can increase the expression of Bax, reduce the expression of Bcl-2 and caspase-3, a marker of apoptosis, which is beneficial to the survival of kidney cells. Additionally, compound 5 did not interfere with the antitumor effects of cisplatin in in vivo xenotransplantation models.


Acute Kidney Injury , Cisplatin , Humans , Cisplatin/pharmacology , Antioxidants/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Kidney/pathology , Oxidative Stress , Apoptosis
14.
Ying Yong Sheng Tai Xue Bao ; 34(6): 1517-1524, 2023 Jun.
Article En | MEDLINE | ID: mdl-37694413

The invasiveness and dissemination of exotic species are strongly influenced by its sexual reproduction characteristics, including blooming characteristics and breeding system. Exploring the association of these sexual reproductive traits with invasiveness would be helpful for revealing the mechanism of its successful invasion. We examined the blooming characteristics and breeding system of Gaura parviflora based on field observations, out-crossing index (OCI) estimation, and hand-pollination experiments. The results showed flowering duration of the G. parviflora population (flowering period) was short (more than 3 months). The life span of single flower (floral longevity) was 40.46 h. Its flower diameter was 3.99 mm. Over seven flowers in bloom per inflorescence and most individuals often bloomed synchronously, which showed a 'mass-flowering pattern'. The changing trend of pollen and stigma vitality was relatively similar, but the duration of stigma vitality was 2 h longer than that of pollen. The stigma and the anthers were close to each other at the initial flowering stage, but the stigma removed from the anthers at the full-blooming stage with the style curving downwards. Many pollinators visited flowers in late full-blooming stage, which were mainly Apis mellifera and Syrphidae spp. Their average visiting frequency was 9.8 times·m-2·h-1. The fruit set in natural pollination after emasculation treatment (insect or wind pollination) was signi-ficantly higher than that in bagged and emasculation treatment, and the treatment of emasculated and bagged with nylon net (excluding insect pollination) could also bear fruits, indicating possible existence of ambophily in G. parviflora. The results of pollen ovule ratio (P/O) mensuration, OCI estimation and hand-pollination experiments showed that its mating system type belonged to additive mixed mating system. So, its characteristics, such as smaller flower size, shorter floral longevity and flowering period, were conducive to allocating more resources to plant growth and seed development, which would help improve its total fitness. The changes of spatial position of male and female organs not only avoided interference between male and female functions, but also created opportunities for stigmas to receive outcross pollen. In addition, the 'mass-flowering pattern' was conducive to attracting pollinators. The pollination mechanism of ambophily was helpful to ensure cross-pollination. The additive mixed mating system could provide double reproductive assurance for this species. These reproductive characteristics were significant for the successful invasion and expansion of G. parviflora.


Plant Breeding , Reproduction , Humans , Animals , Bees , Pollen , Pollination , Flowers
15.
Eur J Pharmacol ; 959: 176060, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37775019

Colorectal cancer (CRC) is a common malignant tumor with a high incidence and mortality worldwide. Preoperative chemoradiotherapy is a common treatment for patients with metastatic colorectal cancer (mCRC) as it reduces colostomy and local recurrence. The RAS (rat sarcoma)-RAF (extracellular signal-regulated kinase)-MEK (mitogen-activated protein kinase)-ERK (extracellular signal-regulated kinase) pathway regulates important cellular processes in the CRC. Abnormal ERK activation stimulates cell growth and provides a survival advantage. Our group has previously reported that the compound KZ02 has a stronger ability to inhibit tumor growth than AZD6244 (a MEK inhibitor). In this study, we evaluated the antitumor activity of KZ02 in combination with ionizing radiation (IR) and investigated its mechanism of action in BRAF-mutated colorectal cancer. Our results showed that this combination kills tumor cells better than either radiation or drugs alone, both in vivo and in vitro. Furthermore, studies have shown that KZ02 inhibits ERK overactivation. The combination resulted in a G1 phase arrest, a reduction in the radioresistant S phase, and aggravating DNA damage. It can also inhibit Pim-1 (Moloney murine leukemia virus-1), p-BAD (Bcl-2 associated agonist of cell death), Bcl-2 (B-cell lymphoma 2) and Bcl-XL (B-cell lymphoma-extra large) levels and promote apoptosis when combined with radiation. Our results suggest that KZ02 significantly increases the radiosensitivity of BRAF-mutated CRC cells by perturbing the cell cycle, increasing DNA damage, and promoting tumor apoptosis.


Colorectal Neoplasms , Proto-Oncogene Proteins B-raf , Animals , Mice , Humans , Proto-Oncogene Proteins B-raf/genetics , Mutation , Extracellular Signal-Regulated MAP Kinases/metabolism , Cell Proliferation , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/radiotherapy , Radiation Tolerance/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Cell Line, Tumor
16.
CNS Neurosci Ther ; 29 Suppl 1: 185-199, 2023 06.
Article En | MEDLINE | ID: mdl-37309254

BACKGROUND: Stroke is not only a major cause of disability but also the third leading cause of death, following heart disease and cancer. It has been established that stroke causes permanent disability in 80% of survivors. However, current treatment options for this patient population are limited. Inflammation and immune response are major features that are well-recognized to occur after a stroke. The gastrointestinal tract hosts complex microbial communities, the largest pool of immune cells, and forms a bidirectional regulation brain-gut axis with the brain. Recent experimental and clinical studies have highlighted the importance of the relationship between the intestinal microenvironment and stroke. Over the years, the influence of the intestine on stroke has emerged as an important and dynamic research direction in biology and medicine. AIMS: In this review, we describe the structure and function of the intestinal microenvironment and highlight its cross-talk relationship with stroke. In addition, we discuss potential strategies aiming to target the intestinal microenvironment during stroke treatment. CONCLUSION: The structure and function of the intestinal environment can influence neurological function and cerebral ischemic outcome. Improving the intestinal microenvironment by targeting the gut microbiota may be a new direction in treating stroke.


Gastrointestinal Microbiome , Stroke , Humans , Stroke/drug therapy , Brain , Gastrointestinal Microbiome/physiology , Intestines , Inflammation
17.
Int J Mol Sci ; 24(7)2023 Apr 06.
Article En | MEDLINE | ID: mdl-37047782

Artemisia argyi essence liquid (AL) is an aqueous solution extracted from A. argyi using CO2 supercritical fluid extraction. There have been few investigations on the aqueous solution of A. argyi extracted via CO2 supercritical fluid extraction. This study aimed to explore the moisturizing and antioxidant effects of AL and to clarify the potential mechanism underlying those effects. Expression levels of skin moisture-related components and the H2O2-induced oxidative stress responses in human keratinocyte cells were measured via quantitative RT-qPCR, Western blot, and immunofluorescence. Our results showed that AL enhanced the expression of AQP3 and HAS2 by activating the EGFR-mediated STAT3 and MAPK signaling pathways. In addition, AL can play an antioxidant role by inhibiting the NF-κB signaling pathway and activating the Nrf2/HO-1 signaling pathway, consequently increasing the expression of antioxidant enzymes (GPX1, SOD2) and decreasing the production of reactive oxygen species (ROS). This study revealed that AL could be used as a potential moisturizing and antioxidant cosmetic ingredient.


Antioxidants , Artemisia , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Artemisia/metabolism , Hydrogen Peroxide/metabolism , Carbon Dioxide/metabolism , NF-E2-Related Factor 2/metabolism , Keratinocytes/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism
18.
Chin Med ; 18(1): 21, 2023 Feb 28.
Article En | MEDLINE | ID: mdl-36855145

BACKGROUND: Artemisia vulgaris L. is often used as a traditional Chinese medicine with the same origin of medicine and food. Its active ingredient in leaves have multiple biological functions such as anti-inflammatory, antibacterial and insecticidal, anti-tumor, antioxidant and immune regulation, etc. It is confirmed that folium Artemisiae argyi has obvious anti-HBV activity, however, its antiviral activity and mechanism against herpesvirus or other viruses are not clear. Hence, we aimed to screen the crude extracts (Fr.8.3) isolated and extracted from folium A. argyi to explore the anti-herpesvirus activity and mechanism. METHODS: The antiherpes virus activity of Fr.8.3 was mainly characterized by cytopathic effects, real-time PCR detection of viral gene replication and expression levels, western blotting, viral titer determination and plaque reduction experiments. The main components of Fr.8.3 were identified by using LC-MS, and selected protein targets of these components were investigated through molecular docking. RESULTS: We collected and isolated a variety of A. vulgaris L. samples from Tangyin County, Henan Province and then screened the A. vulgaris L. leaf extracts for anti-HSV-1 activity. The results of the plaque reduction test showed that the crude extract of A. vulgaris L.-Fr.8.3 had anti-HSV-1 activity, and we further verified the anti-HSV-1 activity of Fr.8.3 at the DNA, RNA and protein levels. Moreover, we found that Fr.8.3 also had a broad spectrum of antiviral activity. Finally, we explored its anti-HSV-1 mechanism, and the results showed that Fr.8.3 exerted an anti-HSV-1 effect by acting directly on the virus itself. Then, the extracts were screened on HSV-1 surface glycoproteins and host cell surface receptors for potential binding ability by molecular docking, which further verified the phenotypic results. LC-MS analysis showed that 1 and 2 were the two main components of the extracts. Docking analysis suggested that compounds from extract 1 might similarly cover the binding domain between the virus and the host cells, thus interfering with virus adhesion to cell receptors, which provides new ideas and insights for clinical drug development for herpes simplex virus type 1. CONCLUSION: We found that Fr.8.3 has anti-herpesvirus and anti-rotavirus effects. The main 12 components in Fr.8.3 were analyzed by LC-MS, and the protein targets were finally predicted through molecular docking, which showed that alkaloids may play a major role in antiviral activity.

19.
Stem Cell Rev Rep ; 19(2): 285-308, 2023 02.
Article En | MEDLINE | ID: mdl-36173500

A very important cause of the frustration with drug therapy for central nervous system (CNS) diseases is the failure of drug delivery. The blood-brain barrier (BBB) prevents most therapeutic molecules from entering the brain while maintaining CNS homeostasis. Scientists are keen to develop new brain drug delivery systems to solve this dilemma. Extracellular vesicles (EVs), as a class of naturally derived nanoscale vesicles, have been extensively studied in drug delivery due to their superior properties. This review will briefly present current brain drug delivery strategies, including invasive and non-invasive techniques that target the brain, and the application of nanocarriers developed for brain drug delivery in recent years, especially EVs. The cellular origin of EVs affects the surface protein, size, yield, luminal composition, and other properties of EVs, which are also crucial in determining whether EVs are useful as drug carriers. Stem cell-derived EVs, which inherit the properties of parental cells and avoid the drawbacks of cell therapy, have always been favored by researchers. Thus, in this review, we will focus on the application of stem cell-derived EVs for drug delivery in the CNS. Various nucleic acids, proteins, and small-molecule drugs are loaded into EVs with or without modification and undergo targeted delivery to the brain to achieve their therapeutic effects. In addition, the challenges facing the clinical application of EVs as drug carriers will also be discussed. The directions of future efforts may be to improve drug loading efficiency and precise targeting.


Brain , Extracellular Vesicles , Extracellular Vesicles/metabolism , Blood-Brain Barrier , Stem Cells , Drug Carriers/metabolism
20.
Int J Radiat Biol ; 99(2): 259-269, 2023.
Article En | MEDLINE | ID: mdl-35583501

PURPOSE: With the development of nuclear technology and radiotherapy, the risk of radiation injury has been increasing. Therefore, it is important to find an effective radiation-protective agent. In this study, we designed and synthesized a novel compound called compound 8, of which the radioprotective effect and mechanism were studied. MATERIALS AND METHODS: Before being exposed to ionizing radiation, mice were pretreated with compound 8. The 30-day mortality assay, hematoxylin-eosin staining, and immunohistochemistry staining assay were performed to evaluate the anti-radiation effect of the compound 8. TUNEL and immunofluorescence assays were conducted to study the anti-radiation mechanism of compound 8. RESULTS: Compared to the IR + vehicle group, the 30-day survival rate of mice treated with 25 mg/kg of compound 8 was significantly improved after 8 Gy total body irradiation. In the morphological study of the small intestine, we found that compound 8 could maintain crypt-villus structures in the irradiated mice. Further immunohistochemical staining displayed that compound 8 could improve the survival of Lgr5+ cells, ki67+ cells, and lysozyme+ cells. The results of TUNEL and immunofluorescence assays showed that compound 8 could decrease the expression of apoptosis-related caspase-8/-9, γ-H2AX, Bax, and p53. CONCLUSIONS: These results indicate that compound 8 exerts its effects by maintaining structure and function of small intestine. It also reduces DNA damage, promotes crypt proliferation and differentiation. Moreover, it may enhance the anti-apoptotic ability of small intestinal tissue by inhibiting the activation of p53 and blocking the caspase cascade reaction. Compound 8 can protect the intestinal tract from post-radiation damage, it is thus a new and effective protective agent of radiation.


Radiation Injuries, Experimental , Radiation-Protective Agents , Mice , Animals , Tumor Suppressor Protein p53/metabolism , Radiation Injuries, Experimental/drug therapy , Radiation Injuries, Experimental/prevention & control , Radiation Injuries, Experimental/metabolism , Intestine, Small , Intestinal Mucosa/metabolism , Intestinal Mucosa/radiation effects , Radiation, Ionizing , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/chemistry , Apoptosis/radiation effects , Mice, Inbred C57BL
...